Neuron:前沿!Tau蛋白会破坏阿尔茨海默氏病(AD)的核质转运(新机制)
tau蛋白在神经纤维缠结的胞内聚集是阿尔兹海默症(AD)主要的神经病理特征【1】。在AD患者大脑中,tau蛋白的持续超磷酸化和聚集与突触丧失、神经退化密切相关,因此异常磷酸化的tau蛋白很可能是认知能力下降的一个关键驱动因子【2】。但是,关于tau蛋白的聚集和随之而来的细胞毒性的机制是未知的。
2018年9月7日,来自(美国)哈佛医学院马萨诸塞州综合医院、(美国)约翰霍普金斯医学院、(瑞士)巴塞尔大学、(美国)梅奥诊所、(美国)索尔克生物研究所、(德国)德国神经退行性疾病中心与凯撒研究中心、以及(西班牙)生物医学研究所等研究单位的联合研究团队,将他们的 一项前沿性研究成果,以Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease为题(Article)在线发表在Neuron上。
研究表明:tau蛋白与核孔复合体组分可以直接发生相互作用, 导致Nup98蛋白(一种核孔蛋白)的错误定位,进而破坏核孔复合体的功能。这一变化进而说明核孔复合体的功能性障碍会诱发AD中由tan蛋白介导的神经毒性,以及tau蛋白疾病【3】。
核孔复合体(Nuclear pore complexes,NPCs):在结构上,为镶嵌在内外核膜上的一种篮状复合体结构,由30种不同核孔蛋白(nucleoporins,Nups)的多拷贝组成,其中8种核孔蛋白具有FG(phenylalanine-glycine,苯丙氨酸-甘氨酸)多态重复序列【4】。在功能上,NPCs可以被看做是一种特殊的跨膜运输蛋白复合体,并且是一个双功能、双向性的亲水性核质交换通道,主要负责大分子蛋白和RNA在核质和胞质之间的运输,对物质交换有一定调节作用。【5】
NPCs是一种分子组装体(molecular assemblies):由胞质环(cytoplasmic ring))、核质环(nuclear ring)、辐(spoke)等结构组成。胞质环、核质环都呈八蛋白中心对称结构,从胞质环上发出纤维伸向胞质,核质环上也有纤维发出,并在核质远端构成一个小环,形成吊篮结构。八条辐位于核质环和胞质环之间的核膜内,也呈中央对称(Fig.1)【6】。
Fig.1 The structure of the nuclear pore complexes
分子量小于40kDa的分子可以以被动运输的方式自由通过NPC,然而,大分子则需要由核运输受体与核孔蛋白互做所介导的主动运输来帮助通过NPC【4. 7】。
研究证实,在由 C9orf72蛋白突变所引发的肌萎缩侧索硬化症(ALS)和额颞部痴呆症(FTD),亨廷顿氏舞蹈症(HD)等神经退行性疾病,以及在人的正常衰老过程中,核质运输出现了紊乱【8-10】。
对C9orf72蛋白引发的ALS/FTD的研究中,发现C9orf72基因内具有多碱基重复序列,对应产物RNA则有更多的GGGGCC(G4C2)重复序列,且与RanGAP1能相互作用(RanGAP1:the GTPase activator for the nuclear Ras-related regulatory protein Ran, converting it to the putatively inactive GDP-bound state),然而,在HD中,核内亨廷顿蛋白包涵体却与Nup62和RanGAP1两者皆能发生相互作用【9-10】。此外,在对AD患者死后解剖中,也发现了核膜形态的改变、某些转录因子从细胞核到细胞质过程的的错误定位、以及Ran蛋白(endogenous protein whose localization is known to be sensitive to NPC dysfunction)的减少表达,这些结果表明,由C9orf72蛋白诱发的ALS/FTD与HD有类似的病理学缺陷【11-13】。
然而,tau蛋白是否参与到这些缺陷中?tau蛋白在核质转运中伴有何种作用?还未见报道。
在本研究中,首先,在AD患者样本、tau蛋白转基因小鼠、以及有AD神经病理学的tau蛋白的细胞模型的中,研究者们发现在磷酸化tau蛋白阳性细胞(phospho-tau-positive cells)内有已损伤的核转运途径存在,进而发现tau蛋白可以以不同的方式影响NPC的完整性(Fig.2)。在体内实验中,tau蛋白与Nup98蛋白可以直接相互作用,并导致在神经元纤维缠结中Nup98的细胞质错误定位,进而诱发核膜上PNC的异常分布(Fig.3)。
Fig. 2 In AD, Tau Is Found at the Nuclear Membrane and NPCs Mislocalize to the Cytosol
Fig. 3 The FG-Nucleoporin Nup98 Mislocalizes to the Cytoplasm in AD Brains
随后实验发现,随着核孔通透性的改变、以及包括Ran等活性蛋白的输入和输出的改变,核孔运输表现出异常,扩散-屏障性质也表现出异常;又在AD人组织的免疫共沉淀实验和重组蛋白的表面等离激元共振(SPR)实验中,进而证实了tau蛋白与Nup98蛋白能直接相互作用(Fig.4)。
Fig.4 Phospho-tau Interacts with Nucleoporins in Nuclei from AD Brain and In Vitro
最后,在小鼠体内实验中,发现Nup98蛋白能诱发tau蛋白聚集,并强化tau蛋白原纤维化。因此,可推测在AD患者和tau蛋白疾病患者的神经元胞体中,Nup98蛋白也会致使tau蛋白的聚集、神经原纤维的缠结,或是影响缠结的稳定性(Fig.5)。
Fig.5 Severe Ran Mislocalization in Transgenic Mice with Tau Aggregation
总的来说:减少或阻止以Nup98蛋白与tau蛋白的相互作用,不仅可以恢复AD、FTD和其他神经退性疾病的核质运输,又能为这些疾病的治疗提供新策略(Fig.6)。
Fig. 6 Reducing Tau Mitigates Nup98 Aggregation and Rescues Ran Gradient in Mice
补充阅读
【1】Science:前沿!成人神经细胞再生与BDNF的共操作可作为阿尔兹海默症(AD)的一种强有力治疗途径
【2】JEM:前沿!TLR5诱骗受体可作为治愈阿尔兹海默症(AD)的一种新颖且安全的免疫调节剂
【3】Brain: HSPA2被确定为晚发型阿尔兹海默症的一个关键驱动因子
【4】Nature Communications:LRRK2激酶调控α-核突触蛋白的积累,可作为治疗帕金森的药物靶标
通讯作者 Dr. Hyman 简介
Bradley T. Hyman, MD, PhD
John B. Penney, Jr. Professor of Neurology, Harvard Medical School
Alzheimers Unit Director, MassGeneral Institute for Neurodegenerative Disease
Director, Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital
Email: bhyman@mgh.harvard.edu(link sends e-mail)
Brad Hyman studies the anatomical and molecular basis of dementia in Alzheimer’s disease, and Dementia with Lewy Bodies. His research includes a collaborative of several labs working on different aspects of neurodegenerative disease and dementia. He also has a clinical practice in the Memory and Disorder Unit at the Massachusetts General Hospital devoted towards the care of patients with dementia. His research laboratory is pursuing research in Alzheimer’s disease, and other neurodegenerative diseases, with a goal of understanding the neuropathophysiologic and genetic factors that underlie dementia.
They are developing methods to examine clinical-pathological correlates and biomarkers in Alzheimer’s, as well as animal and cell models to explore the natural history of the diseases. A recent focus has been the use of advanced microscopy methods – including multiphoton microscopy for in vivo imaging of plaques, tangles, and synuclein aggregates, as well as FRET methods to detect protein-protein interactions and protein conformation.
Brad is the John B. Penney, Jr. Professor of Neurology at Harvard Medical School and Massachusetts General Hospital. He directs the Alzheimer's disease research unit at the Massachusetts General Institute for Neurodegenerative Diseases (MIND). Brad received his M.D. and Ph.D. from University of Iowa and has received the Metropolitan Life Award, the Potamkin Prize, a National Institute on Aging Merit award, and an Alzheimer Association Pioneer Award. He is the current Director of the Massachusetts Alzheimer's Disease Research Center.
参考文献
【1】Li,X.,et al.,(2011). Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 30, 4825–4837.
【2】Gong, C.X., and Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease.Curr. Med. Chem. 15, 2321–2328.
【3】Bahareh Eftekharzadeh et al., (2018). Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease. Neuron 99, 925–940.
【4】Labokha, A.A.et al., (2013).Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32, 204–218
【5】Lemke,E.A.(2016).The multiple faces of disordered nucleoporins.J.Mol.Biol.428 (10 Pt A), 2011–2024.
【6】Guan Hui, et al., (2006). Dynamics of Nuclear Pore Complex Organization. Chinese Journal of Cell Biology 28: 507-512.
【7】Timney, B.L., et al., (2016). Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215, 57–76.
【8】Zhang, K., et al.(2015). The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61.
【9】Grima, J.C., etal.(2017).Mutant huntingtin disrupts the nuclear pore complex. Neuron 94, 93–107.e6.
【10】Mertens, J., et al. (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17,705–718.
【11】Sheffield, L.G.,et al. (2006). Nuclear pore complex proteins in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 45–54.
【12】Lu, T., et al. (2014). REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–454.
【13】Mastroeni, D., et al. (2013). Reduced RAN Expression and Disrupted Transport between Cytoplasm and Nucleus; A Key Event in Alzheimer’s Disease Pathophysiology. PLoS One 8, e53349.
任何公众平台、媒体转载使用须经授权,同时须文首注明原文来源:逻辑神经科学 (ID:LT-Neuroscience)及文末添加:平台二维码;投稿、合作、转载授权等事宜请联系微信ID:
Wang-Sizhen 或邮箱:lt_neuroscience@126.com
关注 逻辑神经科学 微信公众号
添加管理员微信号,带你入坑(入群)
微博账号(逻辑神经科学LT-Neurosci)